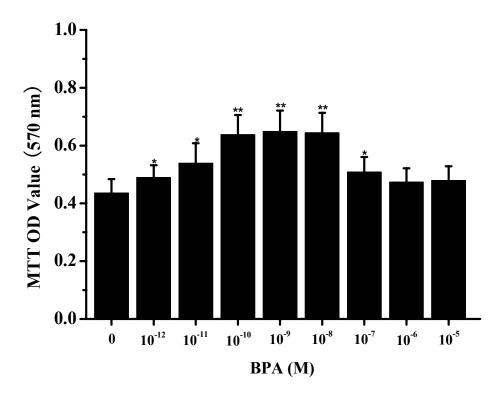
Supplemental Material

Low Concentrations of Bisphenol A Induce Mouse Spermatogonial Cell


Proliferation by G Protein-Coupled Receptor 30 and Estrogen Receptor-α

Zhi-Guo Sheng¹ and Ben-Zhan Zhu^{1,2}

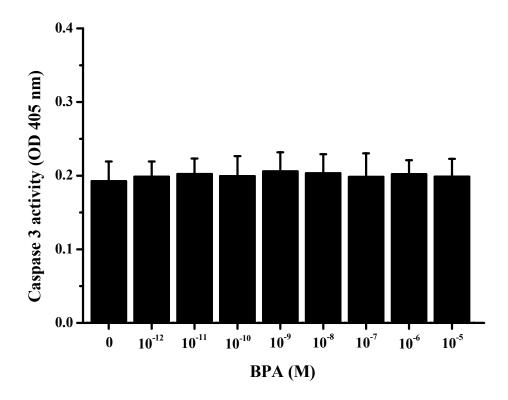
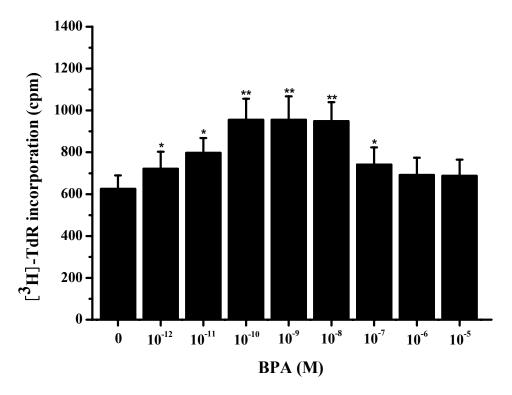
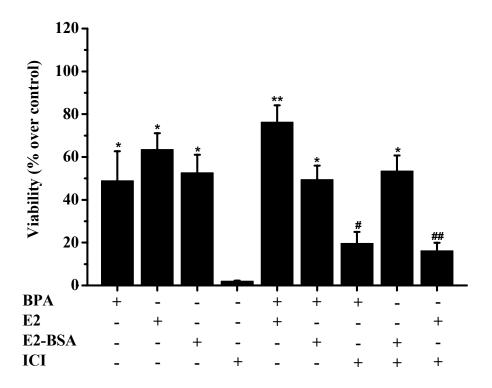

¹State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, P.R. China; ²Linus Pauling Institute, Oregon State University, Corvallis, OR 97331

Table of Contents

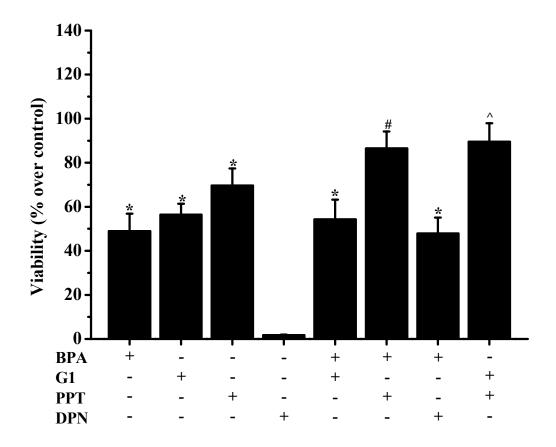
Supplemental Material, Figure 1	P. 3
Supplemental Material, Figure 2	P. 4
Supplemental Material, Figure 3	P. 5
Supplemental Material, Figure 4	P. 6
Supplemental Material, Figure 5	P. 7
Supplemental Material, Figure 6	P. 8-9
Supplemental Material, Figure 7	P. 10



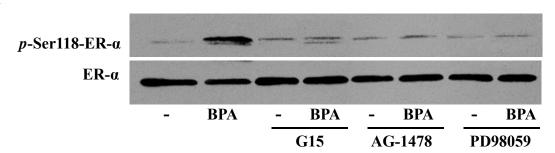
Proliferative effects of BPA on GC-1 cells. Cells were exposed to the indicated concentrations of BPA incubated for 12 h. cell proliferation was assessed by MTT assay, as described in *Materials and Methods*. The results of three independent experiments performed in triplicate were shown as mean \pm SD. *, p < 0.05, compared with control; **, p < 0.05, compared with 10^{-12} , 10^{-11} , 10^{-7} , 10^{-6} , or 10^{-5} M BPA;

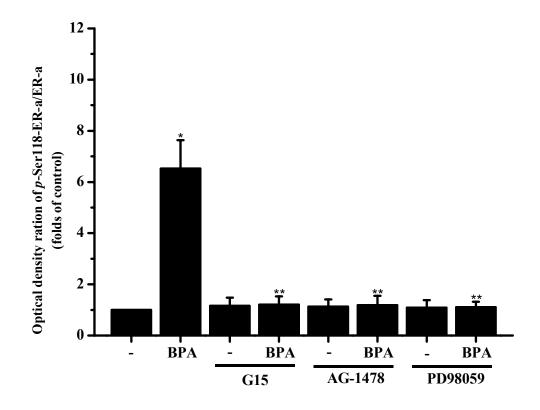


Low concentrations of BPA do not suppress the caspase 3 activity of GC-1 cells.


The activity of caspase-3 was measured using the caspase-3-specific tetrapeptide substrate Ac-DEVD-p-nitroanilide, as described in *Materials and methods*. The values were means \pm SEM of three independent experiments.

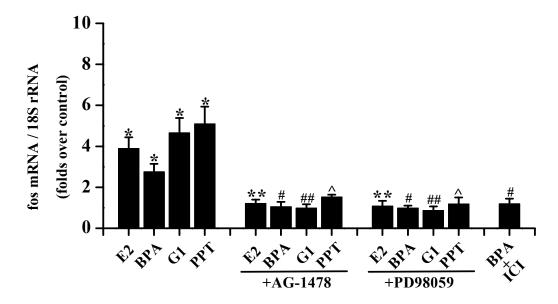
[³H]-TdR incorporation effects of BPA on GC-1 cells. Cells were exposed to the indicated concentrations of BPA incubated for 12 h. cell proliferation was assessed by [³H]-TdR incorporation analysis, as described in *Materials and Methods*. The results of three independent experiments performed in triplicate were shown as mean \pm SD. *, p < 0.05, compared with control; **, p < 0.05, compared with 10^{-12} , 10^{-11} , 10^{-7} , 10^{-6} , or 10^{-5} M BPA;


BPA-mediated GC-1 cell proliferation is likely through activating the membrane GPCR and the nuclear ER-α. Cells were exposed to 10^{-9} M BPA, combined with E2 or E2-BSA (each at 10^{-9} M) for 12 h or pretreatment with ICI for 60 min. Cell proliferation was determined by MTT assay, as described in *Materials and Methods*. The results of three independent experiments performed in triplicate were shown as mean \pm SEM. The values shown were the percent change of viable cells compared with the control (steroid-free medium containing DMSO for BSA or ethanol for E2 and E2-BSA) and control was set as 1. *, p < 0.05, compared with control; **, p < 0.05, compared with E2; **, p < 0.05, compared with BPA alone; ***, p < 0.05, compared with E2.


GPR30 and ER agonists stimulate GC-1 cell proliferation. Cells were treated with BPA (10^{-9} M), G1, PPT or DPN (each at 10^{-7} M) alone or combination. Cell proliferation was determined by MTT assay, as described in *Materials and Methods*. The results of three independent experiments performed in triplicate were shown as mean \pm SEM. The values shown were the percent change of viable cells compared with the control (steroid-free medium containing DMSO) and control was set as 1. *, p < 0.05, compared with G1 or PPT.

Supplemental Material, Figure 6

A


B

BPA activates the ER-α of GC-1 cell by GPR30-EFGR-ERK signaling pathway.

(A) Cells were treated with 10^{-9} M BPA for 12 h combined with G15, AG-1478, or PD98059. Western blot analysis was used to examine both p-ser118-ER- α and total ER- α protein level, as described in *Materials and Methods*. The data represented similar results from three independent experiments performed in triplicate. (B) The

bands of p-Ser118-ER- α and ER- α were quantified by densitometry analysis, and the activated p-Ser118-ER- α was expressed as the p-Ser118-ER- α /ER- α ratio, plotted with SEM. *, p < 0.05, compared with control; **, p < 0.05, compared with BPA alone.

BPA stimulates the *fos* gene expression in GC-1 cells through activating the EFGR-ERK and ER-α pathways. Cells were treated with BPA (10^{-9} M), E2 (10^{-9} M), G1, PPT (each at 10^{-7} M) for 12 h combined with AG-1478 (10μ M), PD98059 (10μ M) or ICI (10μ M). Total RNA was extracted, and real-time RT-PCR was used to examine *fos* mRNA levels, as described in *Materials and Methods*. Each sample was normalized to its 18S rRNA content. The results of three independent experiments performed in triplicate were shown as mean ± SEM. *, p < 0.05, compared with Control; **, p < 0.05, compared with E2 alone; *, p < 0.05, compared with BPA alone; **, p < 0.05, compared with G1 alone; ^, p < 0.05, compared with PPT alone.